

Past Papers Int 2 Chemistry

2003 Marking Scheme

Grade	Mark Required				
Awarded	(/80)				
Α	56+	70%			
В	48+	60%			
С	40+	50%			
D	-	-			
No award	-	-			

2003 Int2 Chemistry Marking Scheme							
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning				
1	В	62	A Aluminium is in group 3 and is not a transition metal. Be Cobalt is a transition metal and Chlorine is a halogen (group 7) element. Coxygen is in group 6 and halide ions are formed from halogens (group 7) Description Sodium is in group 1 and is not a transition metal.				
2	C	26	ChangeEffect on Reaction RateEffect on Volume of Gas ProducedDecrease inSlowerSameConcentration(less successful collisions)(still same quantity of reactants)				
3	В	71	Atoms are neutral when: total positive charge = total negative charge .: In neutral atoms: number of protons = number of electrons				
4	Α	84	☑A 2,8,1 is the electron arrangement of sodium (group 1) ☑B 2,8,2 is the electron arrangement of magnesium (group 2) ☑C 2,8,3 is the electron arrangement of aluminium (group 3) ☑D 2,8,4 is the electron arrangement of silicon (group 4)				
5	C	75	Isotopes Same atomic number but different mass number Same number of protons but different number of neutrons				
6	D	33	Compound formula: X_2O_3 : Valency of X must be 3 forming X^{3+} ion Equation: $X \longrightarrow X^{3+} + 3e^-$ (X loses 3 electrons)				
7	В	81	☑A Bromine is a non metal and is a non-conductor ☑B Mercury is a metal and is a conductor of electricity ☑C Oxygen is a non metal and is a non-conductor ☑D Sulphur is a non metal and is a non-conductor				
8	В	89	Write down Formulae of ions Write down Valency below each ion Put in Cross-over Arrows Follow arrows to get formula Al SO ₄				
9	D	67	 ☑A ethane has only the one structure and has no isomers ☑B ethene has only the one structure and has no isomers ☑C propane has only the one structure and has no isomers ☑D There are two structures for C₃H₀: propene (in question) and cyclopropane 				
10	Α	46	☑A Molecule drawn is methyl ethanoate ☑B Molecule drawn is ethyl ethanoate ☑C Molecule drawn is methyl propanoate ☑D Molecule drawn is ethyl methanoate				
11	D	67	Process Reaction Type Explanation X Distillation Distillation separates compounds with different boiling points Y Cracking Cracking breaks large molecules into smaller unsaturated molecules Z Polymerisation Polymerisation joins up small molecules in to larger polymers				
12	В	49	H H				

			X 4 poly(ethane) is used to make shapping base (and many other things too)						
	_		 ■ A poly(ethane) is used to make shopping bags (and many other things too) ■ B Perspex is a transparent plastic used in spectacles 						
13	\mathcal{C}	60	☑C Poly(ethenol) is a plastic which is soluble in water						
			☑D Kevlar is a strong plastic used in bullet-proof vests						
			There are two monomers used to create this polymer. The 1st 2 carbons (from						
14	Δ	44	either end) are from an ethane monomer. The 3 rd and 4 th carbons have a -CH ₃ side						
1		77	group making the monomer for this group propene						
			Food Type Carbon Hydrogen Oxygen Nitrogen						
4-	_	75	Carbohydrates \checkmark \checkmark \checkmark						
15	D	75	Fats V V X						
			Proteins ✓ ✓ ✓						
			✓A ammonia dissolves in water to form the weak alkali ammonium hydroxide (pH>7)						
1/	A	70	■B non-metal oxides e.g. carbon dioxide dissolve in water to form an acid (pH<7)						
16	A	79	▼ C non-metal oxides e.g. sulphur dioxide dissolve in water to form an acid (pH<7)						
			☑D sodium chloride dissolves in water to give a neutral solution (pH=7)						
17		EE	no. of mol 0.25 mol						
17		55	concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.25 \text{ mol}}{0.5 \text{ litres}} = 0.5 \text{ mol } l^{-1}$						
			☑A Lithium hydroxide is an metal hydroxide/alkali and forms a solution with pH >7						
4.0		11	☑B Alkalis contain a few H ⁺ ions (all water-based solutions contain some H ⁺ ions)						
18		44	☑C Lithium hydroxide is a strong base as there is full dissociation of OH- ions						
			☑D No hydrogen gas produced in reaction: Acid + Metal Hydroxide → Salt + Water						
			🗷 A copper is too unreactive to react with dilute acid to give hydrogen gas						
10		07	■B gold is too unreactive to react with dilute acid to give hydrogen gas						
19		86	☑C magnesium + hydrochloric acid → magnesium chloride + hydrogen						
			☑D mercury is too unreactive to react with dilute acid to give hydrogen gas						
			🗷 A Condensation: small molecules join together with water removed at join						
20	N	73	☑B Distillation: separation of substances with different boiling points						
20	U	13	区 Evaporation: physical change when liquid turns into a gas						
			D Filtration: Separation of a insoluble solid from a liquid						
	$Pb^{2+} + 2NO_3^- + 2Na^+ + 2I^- \rightarrow Pb^{2+}(I^-)_2 + 2Na^+ + 2NO_3^-$								
			Cancel out any spectator ions which appear on both sides						
21	A	76	$Pb^{2+} + 2NO_3^- + 2NO_4^+ + 2I^- \rightarrow Pb^{2+}(I^-)_2 + 2NO_4^+ + 2NO_3^-$						
	, ,		Re-write equation omitting spectator ions						
			Pb^{2+} + $2I^{-} \rightarrow Pb^{2+}(I^{-})_{2}$						
			☑A copper is below zinc in the electrochemical series : no displacement reaction						
22	_	OF	■ B gold is below zinc in the electrochemical series : no displacement reaction						
22	U	85	∑ C iron is below zinc in the electrochemical series ∴ no displacement reaction						
			☑D magnesium displaces zinc from solution as it is higher in the electrochem series						
22	ר	FO	Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions						
23	В	58	Ferroxyl indicator turns pink in the presence of OH- ions						
		0.4	Atomic number = number of protons = 26						
24	A	81	Mass number = number of protons + number of neutrons = 26+30 = 56						
	- •		Mass number - number of protons + number of neutrons - 20+30 - 30 ■ A Bromine has formula Br ₂ ∴ bromine is a diatomic molecule						
	_		☑B Carbon monoxide has formula CO ∴ carbon monoxide is a diatomic molecule						
25	D	36	$\boxtimes C$ Oxygen has formula O_2 : oxygen is a diatomic molecule						
	_		\square D Water has formula H_2O water is a triatomic molecule						
		L	TO WATER THE FOR MINING TIZO WATER IS A IT INTOMIC MOTECUTE						

			Property	Petroleum Gas	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue
26	Λ	74	Viscosity	Low	←			_	High
20	A	/ 4	Evaporation	Quickly	←			_	Slowly
			Flammability	High	←			_	Low
			Boiling Point	Low	←			——	High
27	7	64	☑A Combustio ☑B Condensat	ion: small jo	in together	and water	is removed o		ce burns
<i>L</i> /	ט	• •	区 Fermentat 図D Hydrolysis	starch bre	eaks down ii	nto glucose	with water o		e split
28	В	58	 ■ A calcium hydroxide + hydrochloric acid → calcium chloride + water ■ B calcium carbonate + hydrochloric acid → calcium chloride + water + carbon dioxide ■ C calcium oxide + hydrochloric acid → calcium chloride + water ■ D calcium + hydrochloric acid → calcium chloride + hydrogen (flammable!) 						
29	C	93	1 mol of $(NH_4)_2CO_3 = (2\times14)+(8\times1)+(1\times12)+(3\times16) = 28+8+12+48 = 96g$						
		D 60	Carbohydra	te Gluco	se Fro	ıctose	Maltose	Sucrose	Starch
30	N		Formula	C ₆ H ₁₂	O ₆ C ₆	H ₁₂ O ₆	C ₁₂ H ₂₂ O ₁₁	C ₁₂ H ₂₂ O ₁₁	$(C_6H_{10}O_5)_n$
30	U	U	Reaction with Benedict's Solut	Iblue → bri	ick red blue —	brick red blu	ie $ ightarrow$ brick red	no change	no change

2003 Int2 Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1a	Biological catalyst	Enzymes are proteins which are biological catalysts which catalyse chemical reactions in living organisms at body temperatures				
1b	-c О-H	The carboxyl group (-COOH) is found in carboxylic acids.				
1c	Sugar might ferment into alcohol	Yeast will undergo the process of fermentation in anaerobic conditions: glucose $\frac{\text{yeast}}{\text{(no air)}}$ ethanol + carbon dioxide $C_6H_{12}O_6$ \longrightarrow $2C_2H_5OH$ + $2CO_2$				
2a	Reaction which releases heat/energy	Exothermic: reactions which give out energy or heat Endothermic: reactions which absorb energy/heat from the surroundings				
2b	2 mol	$ \begin{array}{ccc} 2N_2O & \longrightarrow & 2N_2 + O_2 \\ & & & & & \\ 2mol & & & & \\ 4mol & & & & \\ \end{array} $				
2c	Jar A has more oxygen (33%) than air	When dinitrogen monoxide breaks down, it contains 67% nitrogen and 33% oxygen. As air has 21% oxygen, candle will burn longer in 33% oxygen.				
3a	From right (B) to left (A)	Electrons are released by the reaction at electrode B (right) Electrons move from electrode B to electrode A Electrons are picked up by the reaction at electrode A (left)				
3b	$2Ag^{+}+2I^{-} \rightarrow 2Ag+I_{2}$	$2Ag^+ + 2e^- ightarrow 2Ag$ $2I^- ightarrow I_2 + 2e^-$ Add together equations cancelling out electrons $2Ag^+ + 2I^- ightarrow 2Ag + I_2$				
3c	To complete circuit	The ion bridge completes the circuit as it allows ions to travel from side to side to balance the movement of charge moving within the circuit.				
3d	Starch turning blue/black	The test for iodine is starch turning blue/black				
4a	Provide body with energy	Food Type Importance to Diet Carbohydrates Fats Provide body with energy Proteins Needed for body growth and tissue repair				
4b	Plants	Plants produce oils e.g. olive oil, sunflower oil, primrose oil, etc				
4c	Oils are more unsaturated than fats	Fats are solid because the carbon chains within the molecule are straight and the molecules fit closely together. This leads to the molecule having a higher melting point and therefore is a solid at room temperature. Oils are unsaturated and the C=C double bonds in the chain stop the molecules getting as close together and there fore lowering the melting point to make the oil a liquid at room temperature.				
4d	Addition of hydrogen across C=C double bonds	H H + H₂ H H H H				

_	Energy required	Group O Element	Helium (He)	Neon (Ne)	Argon (Ar)		
5a	decreases	Energy Required	2400 kJ mol ⁻¹	2100 kJ mol ⁻¹	1650 kJ mol ⁻¹		
		Going down a group the energy required decreases. Element Sodium ← → Argon					
	Energy required	Atomic Number	Sodium ←		→ Argon → 18		
5b	increases	Energy Required	500 kJ mol ⁻¹ ◆		→ 1650 kJ mol ⁻¹		
	mer eases			eriod from sodium to			
_	Bar between	Bar must be higher	•				
5c	400 and 750	Bar must not be abo			•		
6a	Diagram showing:	H N-(CH ₂) ₆ -N H (H ₂ O	ļ.	condensation Hz			
		— N-(CI		2)4-C—N-(CH2)			
6b	2 functional groups on each monomer	To make a large poly keep the polymer be the formation of th	eing formed. One f				
7a	Methanol Ester bonds break releasing a one carbon alkanol met				nanol is released		
7b(i)	0.006	Time 0s 400s	0.010 mol l ⁻¹	Change in concentro 0.010 - 0.004 = 0.006 mol l ⁻¹			
7b(ii)	0.000015 or 1.5 ×10 ⁻⁵	Rate = $\frac{\Delta quantit}{\Delta time}$	$\frac{\text{ty}}{400 - 0}$	$\frac{004}{400} = \frac{0.006}{400} = 0$	0.000015 cm ³ s ⁻¹		
8a	Ethanoic acid is a weak acid	Strong Acid: full dissociation of molecules to form H ⁺ ions Weak Acid: partial dissociation of molecules to form H ⁺ ions					
8b	Lower Faster	Strong Acid	ssociation pH Full Low e.g. p Partial Higher e.g.		n Conductivity High Low		
8c	0.835	NaOH no. of mol = vol CH3COOH + 1mol 0.0167mol concentrati	NaOH —— 1mol 0.0167mol		CO ₂ + H ₂ O		
9a	Add solid until no more bubbles form	sulphuric acid +	magnesium>	magnesium sulphate + water	carbon + dioxide		
9b	To ensure all acid is neutralised	sulphuric + acid + Solid is added and a		magnesium sulphate + hydro cid stops bubbling.			
9c	Step 2 filtration Step 3 evaporation	has been added and has been neutralisec salt solution is evap	d. The excess solid	d is removed by filt	•		

		C 11 045						
04	24.10	gfm Mg = 24.5g no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{4.9}{24.5} = 0.2 \text{mol}$ Mg + H ₂ SO ₄ \longrightarrow MgSO ₄ + H ₂						
9d	24.1g	1mol 1mol 0.2mol 0.2mol gfm MgSO ₄ = $(1\times24.5) + (1\times32) + (4\times16) = 24.5 + 32 + 64 = 120.5g$ mass = no. of mol × gfm = $0.2 \times 120.5 = 24.1g$						
10a	carbon dioxide and water	Methane is a hydrocarbon. Hydrocarbons burn to form carbon dioxide and water. The remaining 30% carbon dioxide does not burn.						
10b(i)	Line graph showing:	½mark: labelling axes ½mark: correct scales ½mark: plotting points ½mark: drawing line						
10b(ii)	5.5	Correct answer must match the graph drawn.						
11a	2,3-dimethylbutane	Four carbons on main chain = butane Two -CH3 sidegroups = dimethyl Sidegroups on carbons 2+3 = 2,3- Name: 2,3-dimethylbutane						
11b	Correct drawing of:	C_2H_5 H CH_3 H Any drawing of 4-ethyl-3-methylheptane $H-C-C-C-C-H$ H C_2H_5 H CH_3						
12a	metallic bonding (electrons free to move)	All metals have delocalised electrons which are able to jump from atom to atom. Electrons are free to move and this is conduction of electricity.						
12b	Each chlorine atom gains one electron	Chlorine atoms gain one electron each to become chloride ions $ \begin{array}{cccc} C & + e^{-} & \longrightarrow & C & & & & & & & & & $						
12c	chlorine formed copper formed Copper (II) chloride solution	At Positive electrode: $ 2Cl^{-} \longrightarrow Cl_{2} + 2e^{-} $ At Negative electrode: $ Cu^{2+} + 2e^{-} \longrightarrow Cu $						
13a	$Zn \rightarrow Zn^{2+} + 2e^{-}$	Oxidation is the loss of electrons. Metals reacting to become compounds are oxidation reactions. See data booklet p7 for reduction version of this equation.						
13b	Tin is less reactive than iron	Only metals higher in electrochemical/reactivity series than iron will sacrificially protect iron from rusting.						
13c	Cr ₂ O ₃	Write down Formulae of ions Cr O Cr O Cr O Cr2O3 3 2 3 2						

14a	H H H H H H H H H H H H H H H H H H H	Any correct structure of cyclohexene C6H10							
14b	Bromine solution	PPA Sat	PPA Safety Question						
15a	Ethoxypropane	2 carbons on left of oxygen : molecule starts with eth- 3 carbons on right of oxygen : molecules ends with -propane							
15b	Condensation	Condensation Reaction: Smaller molecules join together to form a bigger molecule with a small molecule like water removed at the join.							
15c	36° <i>C</i>		Compound pentane	Formula C5H12	GFM (5x12) + (12x1) = 60 + 12 =72g	Boiling Point 36°C			
			ethoxyethane	CH3CH2OCH2CH3 = C4H10O	(4x12)+(4x10)+(1x16) = 48+10+16 = 74g	Similar to pentane			